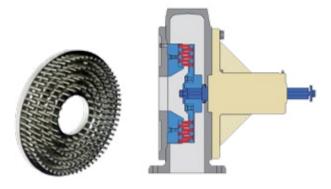


NETZSCH Feinprallmühle Condux®

Das Multisystem zur Trockenmahlung

Individuell und Flexibel

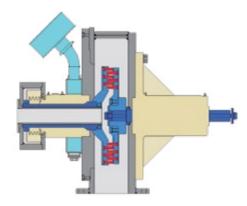
Die Feinprallmühle Condux® ist in einem weiten Anwendungsgebiet einsetzbar. Ausgerüstet mit unterschiedlichen Mahlwerkzeugen und Statoren steht jeweils eine produktoptimierte Mühle zur Verfügung, die auch in druckstoßfesten oder schutzgasbeaufschlagten Anlagen und zur Kryogenvermahlung eingesetzt werden kann. Condux® verbindet alle Vorzüge modernster Mahltechnik mit vielseitigen Anwendungsmöglichkeiten. Wir bieten Ihnen für die unterschiedlichsten Produkte jeweils eine praxisgerechte Maschinenausrüstung höchster Effizienz.



Stiftscheiben

für kristalline und spröde Produkte.

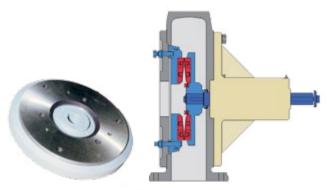
Die Einstellung der Mahlfeinheit bei der Stiftmühle erfolgt hauptsächlich durch die Drehzahlanpassung der Rotorscheibe (Umfangsgeschwindigkeit bis 150 m s⁻¹). Zusätzlich besteht die Möglichkeit, durch die Anzahl der Mahlstifte und der Stiftgeometrie Einfluss auf die Feinheit zu nehmen.


Produktfeinheiten: < 50 μm

Stiftscheiben, gegenläufig

Durch Anbau eines zweiten Antriebes an der Gehäusetür der Mühle wird die bei der einläufigen Stiftmühle hier fest installierte Statorscheibe ebenfalls zum Rotor. Durch das gegensätzliche Antreiben dieser beiden Stiftscheiben wird die relative Umfangsgeschwindigkeit auf bis zu 250 m s⁻¹ erhöht. Die Einsatzgebiete dieser Maschinenvariante liegen in ähnlichen Produktbereichen wie die herkömmliche Stiftmühle, allerdings mit einem deutlichen Schwerpunkt in der "Kaltvermahlung".

Produktfeinheiten: < 30 μm

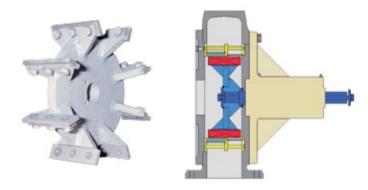


Mahlscheiben

für spröde bis zäh-elastische Produkte mit geringer Restfeuchte.

Die Mahlscheiben sind je nach Produktanforderung mit einer bestimmten Anzahl geschliffener Scherkanten bestückt. Zusätzlich wird die Feinheit durch die Einstellung des Scheibenabstandes und der Drehzahl der Rotorscheibe bestimmt.

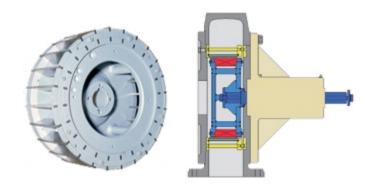
Produktfeinheiten: $< 400 \ \mu m$


Effektiv und rentabel

Rotor / Stator

In Kombination mit verschiedenen Statorkörben werden Hochleistungsrotoren in geschweißter Ausführung für hohe Beanspruchung bei spritzkornfreien Endfeinheiten eingesetzt. Die Auswahl des einzusetzenden Rotors ergibt sich aus der erforderten Zielfeinheit sowie den Eigenschaften des zu vermahlenden Produktes. Die Stator-Varianten werden hauptsächlich zur Optimierung der gewünschten Mahlfeinheit benötigt:

Schlagkreuz


für sprödbrüchig bis zäh-elastisch brechende Produkte mit Konsistenz von trocken bis mittelfeucht. Die Variation der Mahlfeinheit wird durch die Anpassung der Umfangsgeschwindigkeit und/oder unterschiedlicher Statorbestückung erreicht. Produktfeinheiten: < 500 μm

Gebläserotor

für spröde bis zäh-elastische Materialien als auch kristalline Produkte mit Konsistenz von trocken bis feucht. Aufgrund der großen Anzahl auswechselbarer Schlagleisten erbringt der Gebläserotor eine große Eigenluftmenge. Dadurch ist es möglich auch temperaturempfindliche Produkte zu verarbeiten. Die Veränderung der Mahlfeinheit ist durch die Anpassung der Umfangsgeschwindigkeit und/oder unterschiedlicher Statorbestückung möglich.

Siebkorb/Mahlkorb

Ein den Rotor um 360° umschließender Korb in geschraubter Ausführung. Je nach Aufgabenstellung wird der Korb mit einer durchgehenden Siebbahn (Lochung nach Wahl) oder einzelnen Mahlelementen mit grober oder feiner Riffelung bestückt.

Auch die Kombination von Siebbahn mit Mahlelementen ist möglich.

Rotor / Sichter

Die neu konzipierte Ausführung der Prallmühle *Condux*® mit einem integrierten dynamischen Windsichter erbringt hohe Feinheiten und eine exakte Oberkornbegrenzung. Der einfache Gehäusebau gewährleistet dabei eine schnelle Reinigung der Maschine. Im Gegensatz zu konventionellen Sichtermühlen sind Mahlscheibe und Sichterrad drehfest miteinander verbunden und werden über einen gemeinsamen Antriebsmotor betrieben.

Mahlsichter

für spröde und kristalline Produkte mit trockener Konsistenz. Diese Mühlenausführung wird überall dort eingesetzt, wo zweirotorige Sichtermühlen herkömmlicher Bauart zu aufwendig erscheinen und die Endfeinheit mit üblichen Stift- oder Gebläsemühlen nicht erreicht werden kann.

Die Veränderung der Mahlfeinheit erfolgt durch die Drehzahlanpassung der Mahlscheibe/Sichter-Kombination, und kann außerdem durch Anpassung der Sichtradhöhe erfolgen. Eine Einstellung des Luftvolumenstromes ist ebenfalls möglich.

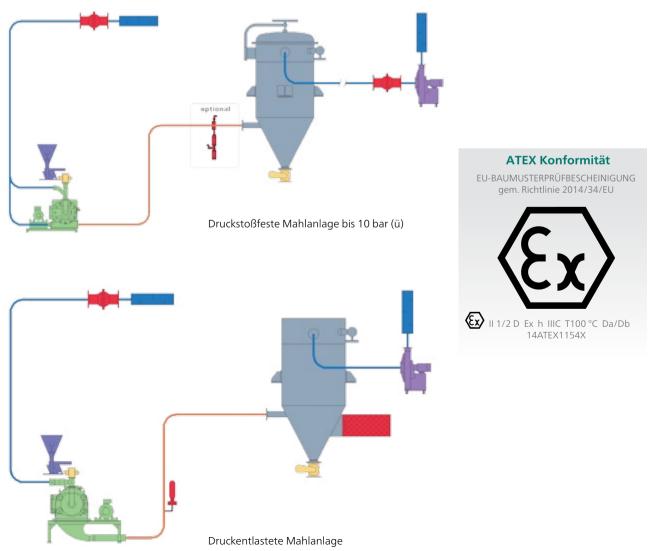
Produktfeinheiten: < 30 μm

Verschiedenste Aufstellvarianten

Standardmahlanlagen

Für die Verarbeitung von nicht staubexplosionsgefährlichen Produkten, die unter normalen Betriebsbedingungen zerkleinert werden können, bieten wir eine große Auswahl an Standardaufstellungen. Bei dem gezeigten Beispiel handelt es sich um eine ebenerdige Aufstellung der kompletten Anlage mit Dosierstation, Mühle mit pneumatischem Mahlguttransport und nachgeschaltetem vollautomatischem Staubfilter. Je nach Einsatz der Mahlanlage kann die Aufstellung einer solchen Anlage auch mit Zwischenabscheidung erfolgen. Das gemahlene Endprodukt wird dann über Hochleistungs-Zyklonabscheider abgeschieden und über Zellenradschleuse oder ähnliche Abschlussorgane ausgetragen.

Eine weitere Variante stellt die Bunkeraufstellung dar. Hier wird die Prallmühle direkt oberhalb eines Mahlgutbunkers platziert. Die Mühle trägt das Produkt direkt in diesen Bunker aus, der unterhalb mit einer entsprechenden Absperrklappe oder Zellenradschleuse zur Produktabfüllung ausgerüstet ist. Auch direkte Fassbefüllungen sind möglich. Eine Entlüftung, bzw. Filtern der Mühlenluft erfolgt hierbei über einen direkt neben der CONDUX® Mühle auf den gleichen Bunker aufgebauten Bunkeraufsatzfilter, der auch das Filtergut wieder in den Mahlgutbunker abreinigt. Somit hat man bei dieser Aufstellung nur eine Materialanfallstelle, und zwar an der eigentlichen Produktabfüllung. Produktverluste durch Staubfiltrierung entstehen nicht.



Druckstoßfeste Mahlanlagen

Für die Feinmahlung von staubexplosionsgefährlichen Produkten sind komplette druckstoßfeste Mahlanlagen bis 10 bar(ü) oder Anlagen mit Explosionsdruckentlastung oder -unterdrückung lieferbar. Als Grundaufstellung werden hierfür häufig die zuvor beschriebenen Standardanlagen der ebenerdigen Aufstellung mit pneumatischem Mahlguttransport gewählt. Je nach Ausführung der Anlage werden sämtliche Anlagenkomponenten in druckstoßfester Bauart bis 10 bar(ü) oder für einen reduzierten Explosionsüberdruck ausgeführt.

Explosionstechnische Entkoppelung von Anlagenteilen durch druckstoßfeste, flammendurchschlagsichere Zellenradschleusen, Schnellschlussschieber und passive Explosionsschutz-Ventile gehören bei dieser Art von Anlagenplanung zu unserem Standard. Löschmittelsperren mit Detektions- und Steuerungssystemen werden auf Wunsch oder bei Notwendigkeit ebenfalls berücksichtigt.

Auch für spezielle Anforderungen

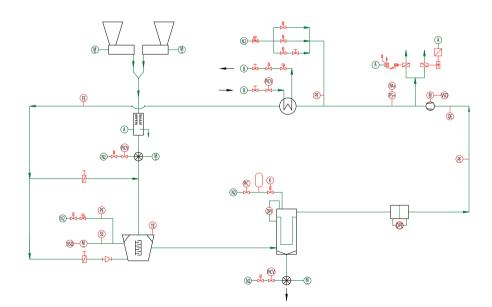
CONDUX® COMPACT

Die Vermahlung von staubexplosionsgefährlichen Produkten stellt in Punkto Sicherheit besondere Anforderungen an die einzusetzende Technologie und Ausführung einer Mahlanlage. Die bis zu einem Explosionsüberdruck von 10 bar(ü) ausgeführte druckstoßfeste Ausführung des kompletten Mahlsystems ist hierbei die am häufigsten eingesetzte Variante, die jedoch einen nicht unerheblichen hohen apparativen Aufwand mit sich bringt.


Mit dem neuen ATEX-konformen Anlagenkonzept Condux® Compact ist nun für zahlreiche Produkte die Installation einer leistungsfähigen Mahlanlage deutlich einfacher: Explosionsschutzventile oder Explosions-Unterdrückungseinrichtungen, Explosions-Entkoppelungen, Ventilatoren und sogar Staubfiltersysteme sind bei dem neu entwickelten Anlagenkonzept nicht mehr erforderlich.

Gegenüber herkömmlichen Mahlanlagen wird mit der neuen *Condux® Compact* das Prozessgas im Kreis gefahren. Das Produkt wird über eine druckstoßfeste Zellenradschleuse direkt der Mühle zugeführt und nach dem Mahlvorgang unterhalb der Maschine über eine weitere Schleuse ausgetragen.

Die an den Schleusen sowie der Mühlenlagerung zugeführte zusätzliche Spülluft wird kontinuierlich vom System abgeführt, um einen sich aufbauenden Überdruck im System zu vermeiden. Der hierfür eingesetzte Mini-Aspirationsfilter – extra ausgelegt für diese Kleinstmengen – verhindert somit einen unkontrollierten Staubaustritt an Produktaufgabe- und Entnahmeschleuse. Ein nachgeschalteter Injektor generiert den notwendigen Unterdruck im System.

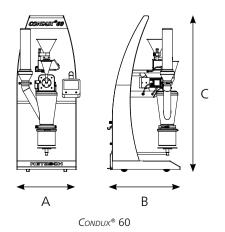

Obwohl weder Prozessluft zur Kühlung, noch sonstige Kühleinrichtungen eingesetzt werden, ist eine Abfuhr der bei der Vermahlung auftretenden Wärmemenge über das Mahlgut gewährleistet, ohne dem Produkt selbst zu schaden. So liegt die max. Temperaturerhöhung z.B. bei einem gemahlenen Puderzucker (Feinheit 99 % < 200 μ m) bei einem ΔT von 25°C.

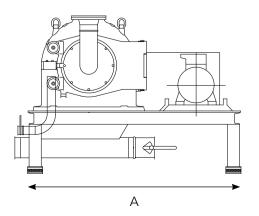
Kaltmahlanlage

Konzipiert für Produkte, die sich bei Normaltemperatur nicht auf die gewünschte Endfeinheit verarbeiten lassen können oder bei denen Qualitätsminderungen wie z.B. Verlust von ätherischen Ölen und thermische Schädigungen auftreten. Der Aufbau einer solchen Anlage ist im Regelfall wie bei einer Standardmahlanlage, wobei jedoch zwischen der Produktzuführung und der Mühle eine Kühlschnecke installiert ist. Hier wird das Aufgabeprodukt vor der Vermahlung mit LN₂ vorgefrostet und versprödet.

Inertgasmahlanlage

Geeignet für staubexplosionsgefährliche Produkte und Materialien, die bei der Verarbeitung zur Oxidation oder Veränderung ihrer Eigenschaften neigen. Die Anlage ist dabei im Kreislaufverfahren aufgebaut, wobei nach der Produktabscheidung das Verfahrensgas über Schutzfilter und Wärmetauscher zur Ansaugseite der Mühle zurückgeführt wird. Während des Anlagenbetriebes wird der Sauerstoffgehalt der Anlageatmosphäre überwacht und unter einem bestimmten Niveau gehalten. Zusätzlich wird die Anlage mit einem geringen Überdruck zur Umgebung betrieben.


Anwendungsbeispiele


Produktbeispiele	Feinheit [µm]	Baugröße	Durchsatz [kg h ⁻¹]		
Ammoniumchlorid	50 - 100	CONDUX® 150	200 - 250		
Anis	d _{98,5} < 800	CONDUX® 680	900 - 1300		
Calcium carbonat	d _{99,9} 20 - 22	CONDUX® 300	1800		
Cellulosederivat (CMC)	d ₉₉ 250	CONDUX® 1250	1800 - 2100		
Cellulosederivat (EHEC)	d ₉₇ 475	CONDUX® 680	1 250		
Cellulosederivat (HPMC)	< 1500	CONDUX® 900	480		
Chilli-Schoten	2 % > 500	CONDUX® 1250	1500		
Getreide (Weizen)	93 % < 250	CONDUX® 450	500		
Getreideflocken	< 500	CONDUX® 450	1000		
Graphit	100 - 200	CONDUX® 300	907		
HDPE	d ₉₅ 1 000	CONDUX® 300	140		
Holzmehl	20 % > 250	CONDUX® 680	500		
Kaliumnitrat	10 - 200	CONDUX® 220	20 - 30		
Kork	30,5 % > 630	CONDUX® 680	320		
Kosmetisches Produkt	d ₉₀ < 30	CONDUX® 220	100		
LDPE	< 500	CONDUX® 680	400		
Maisstärke	< 400	CONDUX® 220	200		
Natriumcarbonat	d ₉₀ < 100	CONDUX® 900	7 500		
Paprika	< 400 - 500	CONDUX® 680	240 - 480		
PTFE	d ₉₆ 500	CONDUX® 680	260 - 340		
PVC (Hart-)	d ₉₀ < 1 000	CONDUX® 680	500		
Ruß	d ₉₈ 45	CONDUX® 150	200 - 300		
SEBS (Styrol-Ethylen-Butylen-Styrol)	d ₉₀ < 800 / 1680	CONDUX® 1250	850 - 1300		
Talkum	45 - 50 % < 63	CONDUX® 680	7000		
UHMWPE	< 800	CONDUX® 450	100		
Urea	200 - 1 200	CONDUX® 300	500 - 600		
Weizengluten	98 % < 2000	CONDUX® 680	7000 - 8000		
Zucker	< 400	CONDUX® 150	400 - 500		
Zucker	d ₉₅ 100	CONDUX® 680	2500		
Zucker	80 % < 100	Condux® 450	2000		
Zucker	99 % < 350	Condux® 450	3000 - 3500		
Zuckerersatzstoff	25 - 30 % < 150	CONDUX® 680	3000		

Technische Daten

Baugröße	C ONDUX®	60	150	220	300	450	680	900	1250	1600
Leistungsfaktor		_	0,3	0,6	1	2	4	6	11	17
Stiftscheiben										
Durchmesser	ø mm	60	150	220	330	500	750	900	1 2 5 0	1600
Drehzahl	min ⁻¹	30000	16000	13 000	9200	5500	3600	3 200	2200	1700
Antriebsleistung (max.)	kW	1,1	5,5	11	22	45	90	132	250	355
Stiftscheiben, gegenläufig										
Drehzahl Gehäuse	min ⁻¹	_	_	11 750	8000	5400	3600	2950	2200	_
Drehzahl Tür	min ⁻¹	_	_	9500	6400	2950	2 100	1600	1 200	_
Antriebsleistung (max.)	kW	_	_	11+7,5	22+15	45+30	90+55	110+90	200+160	_
Mahlscheiben										
Durchmesser	ø mm	_	150	220	300	500	800	_	_	_
Drehzahl	min ⁻¹	_	16000	13 000	9 200	5 500	3 450	_	_	_
Antriebsleistung (max.)	kW	_	5,5	11	22	45	90	_	_	_
Gebläserotor										
Durchmesser	ø mm	60	150	220	300	450	680	900	1 250	1600
Drehzahl	min -1	30000	12000	10000	7 350	4600	3 100	2500	1680	1350
Antriebsleistung (max.)	kW	1,1	5,5	11	18,5	37	75	110	200	315
Schlagkreuz										
Durchmesser	ø mm	60	150	220	300	450	680	900	1 250	1600
Drehzahl	min ⁻¹	23000	9000	6700	4900	3 2 0 0	2400	1650	1 150	900
Antriebsleistung (max.)	kW	1,1	4	7,5	11	22	45	75	132	200
Mahlsichter										
Durchmesser	ø mm	_	150	220	300	450	680	900	_	_
Drehzahl	min ⁻¹	_	12000	10000	7350	4600	3 100	2500	_	_
Antriebsleistung (max.)	kW	_	5,5	11	18,5	37	75	110	_	_
Größe und Gewicht										
Länge (A)	mm	700	1 100	1400	1550	2000	2750	3700	3850	4370
Breite (B)	mm	800	550	800	850	1000	1200	1750	1750	2300
Höhe (C)	mm	1825	800	900	1050	1500	2000	2410	3 120	3 3 1 5
Gewicht ca.	kg	250	230	390	625	1480	2990	6660	9690	21000

CONDUX® 150 - CONDUX® 1600

Die NETZSCH Gruppe ist ein inhabergeführtes, international tätiges Technologieunternehmen mit Hauptsitz in Deutschland. Die Geschäftsbereiche Analysieren & Prüfen, Mahlen & Dispergieren sowie Pumpen & Systeme stehen für individuelle Lösungen auf höchstem Niveau. Mehr als 4.000 Mitarbeiter in 36 Ländern und ein weltweites Vertriebs- und Servicenetz gewährleisten Kundennähe und kompetenten Service.

Dabei ist unser Leistungsanspruch hoch. Wir versprechen unseren Kunden Proven Excellence – herausragende Leistungen in allen Bereichen. Dass wir das können, beweisen wir immer wieder seit 1873.

Proven Excellence.

Geschäftsbereich Mahlen & Dispergieren – weltweit führende Mahltechnologie

NETZSCH-Feinmahltechnik – Deutschland

NETZSCH Trockenmahltechnik – Deutschland

NETZSCH Vakumix – Deutschland

NETZSCH Lohnmahltechnik – Deutschland

NETZSCH Mastermix – Großbritannien

NETZSCH FRÈRES – Frankreich

NETZSCH España – Spanien

ECUTEC - Spanien

NETZSCH Machinery and Instruments – China NETZSCH India Grinding & Dispersing – Indien

NETZSCH Tula – Russland

NETZSCH Makine Sanayi ve Ticaret – Türkei

NETZSCH Korea - Korea

NETZSCH Premier Technologies – USA

NETZSCH Equipamentos de Moagem – Brasilien

NETZSCH Trockenmahltechnik GmbH Rodenbacher Chaussee 1 63457 Hanau Deutschland

Tel.: +49 6181 506 01 Fax: +49 6181 571 270 info.ntt@netzsch.com

